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The flow of a simple glass forming system �a 80:20 binary Lennard-Jones mixture� through a planar channel
is studied via molecular dynamics simulations. The flow is driven by an external body force similar to gravity.
Previous studies show that the model exhibits both a static �F. Varnik et al., J. Chem. Phys. 120, 2788 �2004��
and a dynamic �F. Varnik and O. Henrich, Phys. Rev. B 73, 174209 �2006�� yield stress in the glassy phase.
These observations are corroborated by the present work, where we investigate how the presence of a yield
stress may affect the system behavior in a Poiseuille-type flow geometry. In particular, we observe a blunted
velocity profile across the channel: A relatively wide region in the channel center flows with a constant velocity
�zero shear rate� followed by a nonlinear change of the shear rate as the walls are approached. The observed
velocity gradients are compared to those obtained from the knowledge of the shear stress across the channel
and the flow curves �stress versus shear rate�, the latter being determined in our previous simulations of
homogeneous shear flow. Furthermore, using the value of the �dynamic� yield stress known from previous
simulations, we estimate the threshold body force for a complete arrest of the flow. Indeed, a blockage is
observed as the imposed force falls below this threshold value. Small but finite shear rates are observed at
stresses above the dynamic but below the static yield stress. We discuss the possible role of the stick-slip-like
motion for this observation.
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I. INTRODUCTION

The so-called soft glassy materials �1–3� exhibit a rich
variety of interesting rheological phenomena. When com-
pared to a Newtonian liquid �defined as a liquid whose vis-
cosity, �, does not depend on shear rate, �̇� the viscosity of a
soft glassy system shows pronounced dependence on im-
posed shear rate. To be specific, let us consider disordered
colloidal suspensions �4–6� as a typical example. It is well
known that the shear viscosity of dense colloidal dispersions
decreases with increasing �̇ �shear thinning� if one focuses
the attention on low shear rates. In the limit of high shear
rates, on the other hand, the shear viscosity starts to increase
with �̇ �shear thickening�. While shear thinning is commonly
attributed to the competition between the time scale imposed
by the external flow and the time scale of inherent structural
relaxation, shear thickening phenomenon is rather under-
stood as originating from hydrodynamic effects �7� �whose
contribution to the stress is negligible at low shear rates and
high concentrations but increases considerably at high �̇ �8��.

In this paper, we study a model system whose rheological
properties can be rationalized without taking into account
hydrodynamic effects �9�. Previous studies of the model
showed that it exhibits both a static and a dynamic yield
stress. The main difference between the static and the dy-
namic yield stress lies upon the imposed quantity. While the
static yield stress, �y

static, is measured in experiments upon
imposed stress, the dynamic yield stress, �y

dynamic, is mea-
sured in experiments upon imposed shear. This is so because
a soft glassy material does not develop the same rheological
response in both mentioned cases.

To see this, let us consider a planar Couette cell. If a
lateral force per unit area �=stress� is imposed to one of the

walls of the Couette cell, the system may resist to the im-
posed stress if the latter is below some threshold value
�which generally depends on temperature and density, say�.
For stresses higher than this threshold value, on the other
hand, the system is “liquidized” and flows with a linear ve-
locity profile across the channel �10�. The static yield stress
thus characterizes the response of an initially nondriven
amorphous solid.

If instead of the stress an average shear rate is imposed
�by, e.g., moving one of the walls with a constant velocity�,
the occurrence of a flow is unavoidable by construction.
However, the flow profile need not be linear in this case and
may exhibit strong spatial heterogeneity. In particular, a two-
phase scenario may occur: A region of zero shear �“solidlike”
or “jammed”� coexisting with a sheared �“liquidlike”� region
�11�. Interestingly, as the wall velocity approaches zero, the
shear stress across the system does not converge to zero �as
would be the case for a Newtonian fluid� but seems to satu-
rate at a finite value �9,11,12�. This limit of the shear stress
for vanishing shear rate is usually defined as dynamic yield
stress. It follows from the above description that the dynamic
yield stress characterizes the response of a shear molten
amorphous solid.

It is noteworthy that the static yield stress is found to be
higher than its dynamic counterpart �10�, a situation reminis-
cent of the difference between static and dynamic friction
�without any claim for a strict analogy�. For the present
model and at a temperature and density of T=0.2 and �
=1.2 our previous studies yield �y

dynamic�0.5 �9� and �y
static

�0.6 �10� �all quantities are given in Lennard-Jones �LJ�
units; see below�.

In a glass forming system, the static yield stress does, in
general, depend on the system history and the way the stress
is imposed. In particular, it depends on the waiting time �the
time elapsed between the temperature-density quench and*f.varnik@mpie.de
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the beginning of stress ramp� as well as on the rate with
which the stress is increased. In the present simulations,
however, no stress ramp is applied. Rather, after a waiting
time of tw, we instantaneously switch on a constant external
force field exerting a body force of Fe on each particle �see
also Sec. II�. Furthermore, we focus on sufficiently large
waiting times so that, within the time window accessible to
our simulations, flow profiles are hardly affected by a depen-
dence of the static yield stress upon tw �see Sec. III for fur-
ther discussion of this issue�.

In contrast to the static yield stress, the above definition of
a dynamic yield stress allows one to avoid these complica-
tions. This follows from the fact that �y

dynamic reflects the
system response to a small but finite steady state shear,
where time translation invariance is recovered. Taking the
limit of vanishing shear rate does not affect this property.

Obviously, the existence of a dynamic yield stress presup-
poses the existence of a plateau in the flow curve �shear
stress versus shear rate� in the limit of low shear rates. How-
ever, although our previous studies support the existence of
such a plateau in the case of the present binary LJ model, the
issue of a dynamic yield stress in soft glassy materials still
remains controversial �see, e.g., �13� for recent experimental
studies of this topic in colloidal dispersions�. Therefore, it is
worth checking whether our model system also exhibits
other features which follow from the existence of a yield
stress. As will be shown in this paper, the answer to this
question is affirmative. In particular, we observe nontrivial
behavior such as profile blunting and flow blockage in a
Poiseuille-type flow geometry, features which can consis-
tently be described assuming the existence of a dynamic
yield stress.

The paper is organized as follows. After an introduction
of the model and the simulation method in the next section,
the effect of yield stress on the behavior of the system in a
planar channel flow driven by an external body force will be
investigated. In particular, it will be shown that the velocity
profile exhibits salient features of a two-phase system: A
“solidlike” central part with zero velocity gradient and two
lateral “liquidlike” sections between the channel center and
the walls. A consequence of this property on the dependence
of the mass flow rate upon the imposed force is worked out
and compared to the case of the same system in the normal
liquid state, where it behaves like a Newtonian liquid with a
shear independent viscosity. A summary compiles our
results.

II. BINARY LENNARD-JONES MIXTURE

In order to address the above mentioned issue, we study
via molecular dynamics simulations a generic glass forming
system, consisting of an 80:20 binary mixture of Lennard-
Jones particles �whose types we call A and B� at a total
density of �=�A+�B=1.2.

A and B particles interact via ULJ�r�=4�����d�� /r�12

− �d�� /r�6�, with � ,�=A ,B, �AB=1.5�AA, �BB=0.5�AA, dAB

=0.8dAA, dBB=0.88dAA, and mB=mA. In order to enhance
computational efficiency, the potential was truncated at twice
the minimum position of the LJ potential, rc,��=2.245d��.

The truncation of the LJ potential introduces a disconti-
nuity in the force field, which could be corrected via a
smoothing procedure �14�. However, the present model with
the truncated version of the LJ potential has extensively been
studied in the literature and has become a benchmark model
for the studies of glassy systems. Therefore, and for the pur-
pose of comparison with previous studies �10,11,15–19�, we
keep the model as it is. Note also that the use of a truncated
LJ potential is not a priori a disadvantage, since we do not
seek a comparison with analytic studies of this specific sys-
tem. Rather, we are interested in generic features of a glass
forming model system for which the present binary LJ mix-
ture has indeed become a prototypical example.

The parameters �AA, dAA, and mA define the units of en-
ergy, length, and mass. All other quantities reported in this
paper are expressed as a combination of these units. The unit
of time, for example, is given by 	LJ=dAA

�mA /�AA and that
of stress by �AA /dAA

3 . Equations of motion are integrated us-
ing a discrete time step of dt=0.005. In order to test numeri-
cal accuracy, we also performed simulation runs using a
smaller time step of dt=0.001. Since no deviations were
found between the results obtained for dt=0.005 and dt
=0.001, we chose the larger time step for all the subsequent
simulations.

The present model �Fig. 1� has first been introduced by
Kob and Andersen in the context of the dynamics of super-
cooled liquids �15–17�, who showed that it was suitable for
an analysis of many aspects of the mode coupling theory of
the glass transition �MCT� �20–22�. In particular, at a total
density of �=1.2, equilibrium studies of the model showed
that the growth of the structural relaxation times at low tem-
peratures could be approximately described by a power law
as predicted by the ideal MCT, 	relax
 �T−Tc�−�MCT. Here,
Tc=0.435 is the mode coupling critical temperature of the
model and �MCT is the critical exponent. For the present
binary Lennard-Jones system, numerical solution of ideal
MCT equations yields a value of �MCT�2.5 �18�. A similar

FIG. 1. �Color online� Snapshot of the simulation box. The sys-
tem consists of 80% of particles of type A �blue� and 20% of type B
�red�. Two atomistic walls �yellowish colors� confine the system
along the z direction �to the left and right of the image�. Periodic
boundary conditions are applied in the remaining x and y directions.
The system size is Lx�Ly �Lz=30�30�86. It contains 92 880

particles in total. The center of the coordinate system �r�=0�� is
placed in the middle of the simulation box. Thus x� �−Lx /2 Lx /2�,
y� �−Ly /2 Ly /2�, and z� �−Lz /2 Lz /2�. x is the flow direction, y
the neutral �vorticity� direction, and z the direction of the velocity
gradient. All lengths are in LJ units.
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value is also obtained for a binary mixture of soft spheres
�23�.

The model has also been studied in the context of the
rheology of disordered systems �9–11,19,24�. In these stud-
ies, aspects such as flow heterogeneity �11�, structural relax-
ation under external drive �19�, and the existence of a static
�10� and a dynamic �9� yield stress were addressed.

An interesting consequence of the presence of a yield
stress on the flow behavior of the system is presented here.
For this purpose, we simulate a Poiseuille-type flow in a
planar channel. The study of such a situation is interesting
since the stress in a Poiseuille-type flow is zero in the chan-
nel center and increases linearly with the distance from it. As
will be shown below, this is a consequence of momentum
balance equation �25,26� and thus independent of the specific
flow profile formed across the channel. If the fluid under
consideration exhibits a finite yield stress, one may expect
that the fluid portion in a certain region around the channel
center �where the stress is below yield stress� should behave
like a solid body while it should flow like a liquid further
away from this region.

We first equilibrate a system of size Lx�Ly �Lz=30
�30�86 �containing 92 880 particles� at a temperature of
T=0.45��Tc�. The temperature is then set to T=0.2 �
Tc�
corresponding to a glassy phase. Note that, the velocity dis-
tribution adapts itself very fast �within a time of one LJ unit�
to the Maxwell distribution corresponding to the new tem-
perature. Particle configurations, on the other hand, keep the
memory of the old �high� temperature for far larger times
�see, e.g., �10� for a short discussion of aging in the case of
the present model system�.

However, as time proceeds, particles gradually rearrange
and the system moves towards that part of the configura-
tional space which corresponds to the new �low� tempera-
ture. This process is fast in the beginning, where thermody-
namic driving forces are the largest, but slows down with
time. In fact, as a characteristic feature of a glassy phase, the
system never reaches thermal equilibrium. Rather, it keeps
evolving towards it endlessly �aging�.

As a result of this aging process, time translation invari-
ance is violated and those system properties which would be
independent on the measurement time in an equilibrium state
�such as structural relaxation time, diffusion coefficient,
static structure function, etc.� show a dependence on the time
elapsed between the temperature quench and the beginning
of the measurement. Furthermore, quantities computed as
time averages also show a dependence on the duration of the
measurement, thus reflecting the fact that, in an aging sys-
tem, ensemble and time averages are no longer equivalent.

In particular, in a glassy state, inherent system dynamics
slows down upon aging and structural relaxation times grow
�ideally� endlessly, eventually exceeding any other time scale
in the problem �such as the time scale imposed by external
shear�. In this interesting limit, the system no longer behaves
like a liquid but rather exhibits solidlike properties, as exem-
plified by the presence of a finite static yield stress. Since we
wish to concentrate on this late time behavior, we first run
simulations in the quiescent state for a sufficiently large
waiting time of tw=104 LJ units before imposing an external
force.

A time of tw=104 LJ units in our simulations is suffi-
ciently large in the following sense. First, it is large so that
the system exhibits a finite, measurable static yield stress
�10�. Second, it is large enough so that the increase of the
static yield stress upon further aging is slow and does not
lead to a qualitative change in the flow behavior �see Sec. III
for a more detailed discussion of aging effects on the flow
behavior�.

After this initial period of time, two solid walls are intro-
duced parallel to the xy plane by immobilizing all particles
whose z coordinate satisfies �z � �40 �walls of three particle
diameter thickness�. A flow is then imposed along the x axis
by applying on each particle a constant force, Fe. This gives
rise to a force density of f =�Fe. The force on a particle is the
sum of the interaction forces arising from the Lennard-Jones
potential and Fe �recall that Fe=0 for t
 tw�.

For our geometry with planar solid walls, it follows that
�u� ·�� �u� =0� , where u� = �u�z� ,0 ,0� is the streaming velocity
�recall that x is the flow direction, y the neutral �vorticity�
direction and z the direction of the velocity gradient�. In the
steady state and in the absence of a pressure gradient
��� p=0��, the momentum continuity equation thus reduces to
�� /�z= f =�Fe, which yields ��z�=�Fez, where we used the
symmetry of the shear stress with respect to the xy plane
���z=0�=0�.

The external force does work on the system. This work is
transformed into heat via viscous dissipation. In the absence
of a thermostat, this would lead to a continuous increase of
temperature with time. In order to keep the system tempera-
ture at a prescribed value, the viscous heat must be removed.
For this purpose, we divide the system into parallel layers of
thickness dz=1 and rescale �once every 10 integration steps�
the y component of the particle velocities within the layer, so
as to impose the desired temperature T. More precisely, we
first compute the local kinetic energy per particle ekin
=1 /N�z��mivyi

2 within a layer centered at z. Here, mi is the
mass of a particle, N�z� the number of particles in the layer
and the sum runs over the particles in the layer only. A scale
factor, s, is then determined via the requirement that the new
velocities svy,i satisfy 1 /N�z��mi�svyi�2=kBT. This gives s
= �kBT /ekin�1/2. Finally, the new velocities are computed via
multiplication of vy,i with s.

Note that such a local treatment is necessary to keep a
homogeneous temperature profile when the velocity profile is
not linear. This is so because in this case the shear rate, �̇,
and hence the rate of heat production, ��̇2 may vary within
the channel giving rise to a temperature gradient if only the
average temperature in the channel is adjusted.

However, despite this local temperature control, the heat
production close to the walls �where the shear rate is very
high� is so fast that a temperature increase in this part of the
channel cannot be fully avoided �recall that viscous heat
scales with �̇2�. The magnitude of the excess temperature
strongly depends on the applied force per particle and is
practically negligible for Fe
0.02 �see also the discussion of
Fig. 6�.

III. RESULTS

Let us first examine possible effects of aging and flow
time on the velocity profile. For this purpose, we prepare the
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system as described above for various choices of the waiting
time tw. Recall that tw is the time interval between tempera-
ture quench and the time at which the external force is
switched on. At this instant, we set the clock to zero, t=0
thus marking the onset of body force.

While the system would gradually “solidify” in the quies-
cent state, the external force tries to induce a flow and thus
tends to “fluidize” �rejuvenate� the system. The extent and
the rate of this rejuvenation does, however, strongly depends
on the magnitude of the stress formed across the channel. As
mentioned above, the stress in the present Poiseuille-type
geometry is a linear function of the distance from the chan-
nel center: ��z�=�Fez. For a given external force, the shear
stress thus increases when approaching the walls.

As a consequence, the system flows first in the proximity
of the walls, while the center of the channel behaves rather
like a solid body. The effect of aging now reflects itself in the
onset of the flow. The larger tw the slower the initial flow
behavior. This feature is nicely born out in the upper panel of
Fig. 2. As a survey of the data corresponding to t=102 re-
veals, the system hardly flows for tw=103 and tw=104

�deforming rather like an elastic solid� while for tw=102 it
“liquidizes” in the proximity of the walls.

The data shown in the upper panel of Fig. 2 also suggest
that, for larger waiting times, the external force must be ap-
plied during a longer period of time �larger t in the figure� in
order to remove memory effects. This is seen by a closer
look at the data corresponding to t=103. Here, the curves
belonging to tw=102 and tw=103 are practically identical,
while that of tw=104 shows significantly slower deformation
behavior. However, applying the external force during a time
of t=5�103, aging effects disappear also in the case of tw
=104.

For a given distance from the channel center, the shear
stress increases �and hence the time scale imposed by the
external force decreases� with increasing the magnitude of
the applied force. This is an important aspect since memory
effects �such as the effect of aging� decay within a typical
structural relaxation time, the latter being of the order of the
externally imposed time scale in glassy systems �see, e.g.
�24� for a detailed discussion of this issue�. In fact, aging
effects are expected to be observable as long as this exter-
nally imposed time scale is significantly larger than the wait-
ing time. Since this time scale reduces upon increasing Fe,
aging effects are expected to also disappear faster. This prop-
erty is nicely born out in the lower panel of Fig. 2, where
data similar to the upper panel are shown for the choice of a
larger external force per particle, Fe=0.025. As seen from
this panel, already at a time of t=102, the flow behavior of
the system is practically independent of tw, even for a wait-
ing time of tw=104� t=102.

Unless otherwise stated, the waiting time is tw=104 for all
the results presented below. After the onset of external force,
we wait another period of time �of duration t=5�103� be-
fore starting the data collection. This helps to reduce the
above discussed transient effects related to a competition of
aging and shear. Note, however, that in a Poiseuille-type flow
of a glassy system, transient effects will always be present to
some extent. This is closely related to the fact that the shear
rate approaches zero as one moves from the walls toward the

center of the channel, thus giving rise to progressively larger
relaxation times. As a consequence, the time necessary to
establish steady state ideally diverges in the center of the
channel. This behavior is enhanced in a yield stress fluid,
where the zero-shear zone has a finite extension comprising a
region around the channel center where the local shear stress
is below the fluid’s yield stress. The “jammed” region corre-
sponds to this part of the system.

In the case of a Newtonian liquid, the above mentioned
approach to drive the flow would give rise to a parabolic
velocity profile of the form u�z�=�Fe�Lz

2 /4−z2� / �2��. How-
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FIG. 2. �Color online� Competitive effects of aging and shear
rejuvenation on the velocity profile. Top: Velocity profile for wait-
ing times of tw=102, 103, and 104 �LJ units� and various measure-
ment times, t, as indicated. Here, tw is the time elapsed between the
temperature quench and the onset of forcing �Fe=0.0175�. Data
collection starts at times t=102, 103, and 5�103 after switching on
the external field. In order to better reveal the effects of aging, the
duration of a measurement is limited to dt=102, 103, and 5�103,
respectively. Bottom: Similar plot as in the upper panel, but for a
higher applied force of Fe=0.025. Here, data collection starts at
times t=102 and 103 after switching on the external field and spans
over dt=102 and 103, respectively. Due to stronger forcing, effect of
shear rejuvenation shows up at shorter times compared to the upper
panel. Note that the system response is independent of tw even at
t=102 �the observed difference between the curves is statistical,
otherwise a smaller deformation would be observed at tw=104 com-
pared to tw=103�. All quantities are in LJ units.
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ever, as Figs. 2 and 3 clearly demonstrate, the velocity profile
in the case of the present model in the glassy phase exhibits
a quite different behavior: In the central region, the velocity
profile is flat with a zero gradient while it gradually departs
from this constant behavior �shear rate becoming nonzero�
beyond this central part.

It is interesting to note that similar �blunted� shapes of the
velocity profile are also observed in pressure driven flows of
both neutrally buoyant suspensions of spheres �with a size of
the order of 1 mm� �27,28� as well as red blood cells �bicon-
cave disks of 2 �m thickness and 8 �m diameter� �29,30�. In
these cases, however, the profile blunting is usually accom-
panied by a migration of particles from the wall region to-
wards the center of the channel �“wall migration”� a phe-
nomenon, which is absent in the case of present studies �see
the lower panel of Fig. 3�.

Other examples of blunted velocity profiles occur in sys-
tems with a nematic order parameter �see, e.g. �31� and ref-
erences therein�. In these systems, the nontrivial rheological
response is closely related to a variation of the system struc-
ture accompanied by a change in the nematic order param-
eter. However, such an order parameter-related structural
change is absent in the case of our glass forming model.

Nevertheless, a qualitative similarity to the case of present
simulations may be found when red blood cells are con-
cerned. This similarity rests upon the fact that profile bunting
in red blood cells occurs only if a certain amount of aggre-
gation among red blood cells is present �see, e.g., Fig. 7 in
�30��. The aggregation enhances the solid character of the
suspension and leads to a higher yield stress, similar to a
reduction of temperature in our model.

The width of the “jammed” region can be estimated from
a knowledge of the yield stress in the system via
��z=W /2�=�FeW /2=�y which gives W=2�y / ��Fe�. The
question arises whether the static or the dynamic yield stress
should be used for an estimate of W. Results of our simula-
tions suggest that the dynamic yield stress yields a better
estimate of the width of the solidlike region in the channel
center. This is exemplified in Fig. 3 �upper panel�. In this
figure, two vertical dashed lines mark the bounds for the
solidlike region estimated via dynamic yield stress whereas
the bounds denoted by short vertical solid lines are obtained
using the static yield stress. As a survey of the velocity gra-
dient reveals, the use of �y

static overestimates the width of the
solidlike region.

It is interesting to check the origin of the observed finite
shear rates at stresses above the dynamic but below the static
yield stress. For this purpose, we performed a series of long
simulation runs of a smaller system �Lx�Ly �Lz=10�10
�40� at constant imposed stress for a temperature of T
=0.2 �far below Tc�. All simulations started after an initial
aging of the system during a time of tw=104. Interestingly,
our data reveal the presence of a stick-slip–like plastic defor-
mation. This occurs not only at stresses between �y

dynamic and
�y

static but also at stresses below �y
dynamic.

This behavior is illustrated in the upper panel of Fig. 4.
The panel shows the center of mass position of the whole
fluid versus time for some selected values of the imposed
stress ranging from �=0.46 �below the dynamic yield stress�
up to the static yield stress ��=�y

static=0.6�. The correspond-
ing center of mass velocity is depicted in the lower panel of
the same figure. As seen from this panel, for stresses below
�=0.52, the contribution of the stick-slip–like motion to the
flow velocity drops by roughly an order of magnitude. It is
noteworthy that a qualitatively similar stick-slip–like dynam-
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FIG. 3. �Color online� Top: Flow through a three-dimensional
planar channel of the model fluid studied in this paper. The flow is
generated by imposing a constant body force of Fe=0.025 on each
particle. At a temperature of T=0.2 and a total density of �=1.2, the
model exhibits a stress plateau at low shear rates which, for the
present purpose, plays the role of a dynamic yield stress, �y

dynamic

�0.5 �9�. One can easily show that the stress in the channel be-
haves as �=�Fez, where z is the transverse coordinate �z=0 being
the channel center� �32�. Obviously, for �z � �16.67 ���y / ��Fe��,
the stress in the channel is below the dynamic yield stress. One thus
expects the system to behave as a solid body for �z � �16.67: Either
it should be at rest or move with a constant velocity �zero velocity
gradient�. Indeed, an inspection of the velocity profile, u�z�, and its
derivative �rescaled to fit into the figure� confirms this expectation
�the region delimited by the two vertical dashed lines�. For �z �
�16.67, on the other hand, the local shear stress exceeds �y

dynamic

�0.5 leading to a liquidlike behavior. The system flows with a
shear rate which nonlinearly increases upon increasing stress. The
short vertical lines show the limits of the expected “jammed” region
using the static yield stress, �y

static�0.6 �see also the text� �24�.
Bottom: Profiles of the system density and the component of the
pressure perpendicular to the walls. Both the density and the normal
pressure are practically constant across the channel. In particular,
there is no wall migration in the case of present simulations. This
strongly suggests that the blunting of the velocity profile observed
in the upper panel is related to the presence of a yield stress which
leads to the mentioned two-phase behavior. All quantities are in
reduced �LJ� units.
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ics has also been observed in our previous simulations under
imposed shear �11� as contrasted to the present case of im-
posed stress.

Using the data shown in Fig. 4, we can estimate the con-
tribution of this intermittent motion to the overall shear rate

via the relation �̄̇=Vc.m. /Lz. Using Lz=40, this gives �̄̇=5.9
�10−4, 7.3�10−5, 6.1�10−5, 1.1�10−5, 1.1�10−6, and
2.8�10−7 for �=0.60, 0.56, 0.52, 0.50, 0.48, and 0.46, re-
spectively. The finite shear rate observed in the case of
stresses between �=0.5 and �=0.6 is therefore closely re-
lated to the onset of significant stick-slip motion at these
stresses.

One interesting consequence of the presence of a yield
stress is that, for a given driving force �pressure gradient� a
flow blockage may occur if the channel width is too small to
allow the formation of stresses above the system’s yield
stress. This “critical” channel width is simply estimated via
Lz=2�y / ��Fe�. Obviously, a similar situation would also oc-
cur at constant channel width via decreasing the applied
body force below Fe=2�y / ��Lz�. Let us estimate this
“threshold” Fe. At the temperature and density studied here
�T=0.2 and �=1.2� the system exhibits a dynamic yield
stress of �y

dynamic�0.5. Using this value as the yield stress

along with Lz=80 we obtain Fe�0.01 for the minimum
force per particle required to induce a flow in the system.

This aspect is illustrated in the upper panel of Fig. 5,
where velocity profiles are shown for various choices of Fe.
As expected, the width of the “jammed” region increases
with decreasing Fe. For Fe=0.017, for example, there re-
mains a narrow liquidlike region close to the walls while the
rest of the system is in a “jammed” state. This observation is
made more quantitative in the lower panel of the same figure.
For this purpose we determine for each Fe the width of a
region with a shear rate larger than a small but finite value.
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FIG. 4. �Color online� Left: X position of the center of mass of
the fluid vs time for some selected stresses. The results shown here
correspond to simulations under constant imposed stress of the
present binary LJ model at a temperature of T=0.2 �below Tc�. The
dimensions of the simulation box are Lx�Ly �Lz=10�10�40.
Right: The same data as in the upper panel, now divided by time.
Note the presence of a flow with a time-independent velocity at �
=0.6. All quantities are in LJ units.
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FIG. 5. �Color online� Top: Velocity profiles �LJ units� obtained
for various choices of the external force per particle as indicated. At
the temperature and density studied here �T=0.2 and �=1.2� the
system exhibits a dynamic yield stress of �y �0.5. Using this value
as the threshold stress for the onset of shear flow along with the
relation ��z�=�Fez for the local stress in the channel, the expected
width of a central region with a solidlike behavior �flat velocity
profile� can be estimated via W=2�y / ��Fe�. The short vertical
dashed lines help to illustrate this central region. Beyond this part of
the channel, a liquidlike behavior is expected. As the external body
force reaches a value of Fe�0.01, the “jammed” region comprises
the whole channel. Bottom: The width of the solidlike region is
estimated approximately as the width of a region with a shear rate
larger than �̇=10−3 �see the upper panel of Fig. 6 for an inspection
of shear rates�. The solid line gives the above mentioned expected
linear dependence on 1 /Fe. Deviations at high Fe are probably re-
lated to undesired viscous heating which leads to an enhanced soft-
ening of the solid region �see also a discussion of the velocity
gradients�. All quantities are given in LJ units.
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We find that the choice ��̇ � =10−3 is a good choice for an
accurate determination of the position of the “interface” be-
tween the liquidlike and the solidlike regions. As can be seen
from the lower panel of Fig. 5, results of this analysis obey
well the expected relation W=2�y / ��Fe� if �y =�y

dynamic

�0.5 is used. The use of static yield stress ��y
static�0.6�

would overemphasize the size of the solidlike part of the
channel.

The upper panel of Fig. 6 illustrates the velocity gradi-
ents, �u�z� /�z, for exactly the same values of the external
force per particle, as shown in the upper panel of Fig. 5.
Here, velocity gradients are compared with profiles of shear
rates, �̇(��z�), estimated from a knowledge of the local stress
and the flow curve upon homogeneous shear: For each z, the
corresponding stress is first evaluated via �=�Fez. In order
to estimate the shear rate corresponding to this shear stress,
we use the homogeneous flow curves ��̇−�� determined in
our previous simulations �9�. In these simulations, an algo-
rithm capable of ensuring a constant shear rate across the
system was used �see, e.g., �24� for details of the simulation
method�.

As the inset of the upper panel of Fig. 6 demonstrates,
�u�z� /�z and �̇(��z�) agree well within a certain region in the
channel, whose extension increases upon decreasing the ex-
ternally imposed force, Fe. This trend is probably related to
the variation of the temperature across the system.

Indeed, the lower panel of Fig. 6 shows that the system
temperature is not constant overall in the channel but slightly
deviates from the prescribed value in a region between the
channel center and the walls. The extent of the central region
with a constant temperature increases at lower Fe while at
the same time the magnitude of the excess temperature with
respect to the prescribed value decreases. Noting that signifi-
cant temperature excesses occur only as the shear stress
reaches values comparable to twice the dynamic yield stress
of the model, it is not surprising that, at such high stresses,
even a local thermostat is not able to ensure a constant tem-
perature profile across the system.

In the above, the knowledge of the homogeneous flow
curve is used in order to obtain an independent estimate of
the local shear rate across the channel. Similarly, one can use
the fact that the shear stress is well known in the channel,
��z�=�Fez, along with the knowledge of the velocity gradi-
ent in order to obtain the flow curves, i.e., shear stress as a
function of shear rate �velocity gradient�. For this purpose,
we plot in Fig. 7 for each value of z the corresponding values
of ��z� versus �̇�z�. Due to the symmetry around the mid-
plane of the channel, the above procedure would yield iden-
tical flow curves using the data from the left and right halves
of the channel provided that no statistical uncertainty is
present. In reality, however, there is a finite statistical scatter.
In order to illustrate this fact, we do not average the results
but depict the individual flow curves obtained from the
analysis of each half of the channel. The so obtained �-�̇
curves are then compared to the result of simulations at ho-
mogeneous shear �9�. The comparison is restricted to shear
stresses, where the relative deviations between the local tem-
perature and the prescribed one are below one percent. With
this restriction, the flow curve obtained from the present

simulations agree well with that of homogeneous shear.

Finally, Fig. 8 illustrates how the mass flow rate, Q̇
=2�Ly	0

Lz/2u�z�dz, varies with applied force per particle. As a
survey of the velocity profiles �Fig. 5� already suggests, the
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FIG. 6. �Color online� Top: Shear rate, �̇�z�=�u�z� /�z, for ex-
actly the same choices of Fe as in the upper panel of Fig. 5. As
expected, the width of the central solidlike region ��̇�0� increases
upon decreasing the external force per particle and eventually
reaches the width of the channel at Fe�0.01 �see also the upper
panel of Fig. 5�. The dotted dashed lines shown in the right half of
the panel represent velocity gradients computed using the flow
curve ��− �̇� of the same model under homogeneous shear �9� and
the fact that ��z�=�Fez �i.e., by plotting for each z the shear rate
�̇(��z�)�. As seen from the inset, for z�20 the thus obtained �̇�z�
agrees well with the observed velocity gradient. However, signifi-
cant deviations occur close to the walls �main figure�. These devia-
tions as well as the maxima in ��u�z� /�z� are probably related to a
local increase of temperature. A vertical dashed line at z=38 marks
the approximate position of these maxima. As a survey of the lower
panel reveals, temperature profiles also exhibit maxima at approxi-
mately the same transverse position. Bottom: Temperature profile
across the channel for various choices of the external force per
particle as indicated. The temperature profiles develop maxima in
the proximity of the walls. The magnitude of the excess temperature
with respect to the prescribed value �T=0.2 in the present case�
increases at higher Fe. In addition to a stress-induced decrease of
shear viscosity �shear thinning� this temperature increase enhances
the decrease of the local viscosity further. As a result, the local
shear rate, �̇�z�, increases faster than would be expected on the
basis of shear thinning alone. As in the case of the upper panel, a
vertical dashed line at z=38 marks the approximate position of
temperature maxima. All quantities are given in LJ units.
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mass flow rate rapidly decreases as the “critical” force per
particle Fe�0.01 is approached �note the logarithmic scale
for the y axis in Fig. 8�. In order to highlight the effect of a
finite yield stress, the data corresponding to the same model
in the normal liquid state �where the yield stress is identi-
cally zero� are also shown. For the normal liquid state, it is

straightforward to show that Q̇
Fe. This relation is nicely
born out by the simulated data. We are, however, not aware
of an analytic expression for the mass flow rate in a yield
stress fluid. Therefore, we fit the data to the simplest poly-
nomial in Fe−2�y / ��Lz� which describes the simulated data
best.

IV. SUMMARY

In this paper, we report on the flow behavior of a simple
glass forming system. The model consists of an 80:20 binary
Lennard-Jones mixture first introduced by Kob and Andersen
in the context of the dynamics of supercooled systems
�15–17�. It is well known for its capability to form a disor-
dered solid at low temperatures or high densities �33�.

Previous studies of the rheological response of the model
suggest the existence of a finite yield stress, �y, in the glassy
phase. In particular, at a temperature of T=0.2 �deep in the
glassy phase�, a finite static yield stress of �y

static�0.6 was
found via simulations upon imposed stress �10�. More recent
studies of the same model under imposed shear, on the other
hand, showed the existence of a stress plateau in the low

shear rate limit of the flow curve �stress versus shear rate� in
the glassy phase �9�. As the present work also underlines,
this stress plateau plays the role of a �dynamic� yield stress.

Here, we study a consequence of the presence of a finite
yield stress as a flow is induced in a planar channel via the
application of an external force. The stress in such a
Poiseuille-type flow is a linear function of the distance from
the channel center. A two-phase behavior may, therefore, oc-
cur in the glassy phase provided that the channel width is
sufficiently large in order to ensure that stress close to the
walls �where it reaches its maximum� is higher than the yield
stress of the system. While the system response is expected
to be solidlike �zero shear rate� in a central part of the chan-
nel �defined as a region where the stress is below the sys-
tem’s yield stress�, it should flow in the “wings” delimited by
this central solidlike region and the walls. This expectation is
born out by our simulations �Fig. 3�.

Furthermore, using the velocity gradient across the chan-
nel �Fig. 6�, we define the width of the “jammed” phase as
the size of the region with a shear rate of �̇�z�=�u�z� /�z

10−3. The accuracy of this estimate is demonstrated in the
lower panel of Fig. 5, where it is shown that the relation W
=2�y / ��Fe� is well satisfied by the data obtained from the
above analysis. As to the numerical value of �y used in the
above formula, our simulation results are consistent with a
value of �y =�y

dynamic�0.5 ��stress plateau upon imposed
shear �9�� while the use of �y

static=0.6 �10� seems to overem-
phasize the size of the solidlike region. Our simulation re-
sults also clearly show that, as the stress increases above the
dynamic yield stress, the contribution of a stick-slip–like mo-
tion to the overall shear rate increases significantly �Fig. 4�.

As a consistency check, flow curves obtained from the
present Poiseuille-type simulations are compared to the re-

0.01 0.0125 0.02 0.03 0.04 0.05
applied force per particle, F

e
10

1

10
2

10
3

10
4

M
as

s
fl

ow
ra

te
,Q

.

T=2 (normal liquid)

T=0.2 (glass)

~(F
e
-2σyield/ρLz)

2

~F
e

FIG. 8. �Color online� Mass flow rate, Q̇=2�Ly	0
Lz/2u�z�dz, vs

applied force per particle for two temperatures characteristic of the
normal liquid state �T=2� and the glassy phase �T=0.2�. In the
normal liquid state, one expects u�z�
Fe �more precisely, u�z�
=Fe��Lz

2 /4−z2� / �2��� and hence Q̇
Fe. In the glass, on the other
hand, the velocity profile is blunted due to the presence of a yield
stress. We expect the system to stop flowing for sufficiently weak
external forces, Fe
2�y / ��Lz� ��0.01 for the case studied here�.
The simulation results shown here conform this picture. Please note

that, while the relation Q̇
Fe is an exact result for the normal liquid

state, the fit Q̇
 �Fe−2�y / ��Lz��2 is a purely empirical one moti-

vated by the fact that Q̇ is expected to vanish at Fe=2�y / ��Lz�. All
quantities are given in LJ units.
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spond to the data extracted from the left part of the channel and
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reproduce the flow curve obtained from previous simulations of a
homogeneous shear for the same model and at the same density and
temperature as studied here �T=0.2;�=1.2� �9�. A horizontal
dashed line marks the position of the stress plateau which, for the
present purpose, plays the role of a dynamic yield stress, �y

dynamic

�0.5 �this stress plateau becomes visible if the data are plotted in
log scale as shown in �9�. On a linear plot, data points for shear
rates below say �̇=10−4 are not distinguishable�. For shear stresses
below �y

dynamic�0.5 the shear rates obtained from the present
Poiseuille-type flow are scattered around �̇=0 indicating that the
shear rate vanishes for ���y

dynamic. All quantities are given in LJ
units.
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sult of previous simulations under homogeneous shear �9�.
With the exception of relatively high driving forces where
uncontrollable viscous heat significantly biases the present
simulation results in the vicinity of the walls, good agree-
ment is found between both approaches �Figs. 6 and 7�.

Finally, the dependence of the mass flow rate on the ex-
ternally imposed force is studied. It is shown that the flow
fully stops as Fe�2�y / ��Lz�. Again, simulated data are well
described by this formula provided that �y =�y

dynamic�0.5 is
used. In particular, the use of �y

static=0.6 leads to Fe
=0.0125 for a complete arrest of the flow, in contrast with
our simulations where a finite flow is observed for this value
of the external force per particle �Fig. 8�.

It is interesting to note that similar �blunted� shapes of the
velocity profile are also observed in pressure driven flows of
both neutrally buoyant suspensions of spheres �with a size of
the order of 1 mm� �27,28� as well as red blood cells �bicon-
cave disks of 2 �m thickness and 8 �m diameter� �29,30�. In
these cases, however, the profile blunting is usually accom-
panied by a migration of particles from the wall region to-
wards the center of the channel �“wall migration”� a phe-
nomenon, which is absent in the case of present studies �see
the lower panel of Fig. 3�.

Nevertheless, a qualitative similarity to the case of present
simulations may be found when red blood cells are con-
cerned. This similarity rests upon the fact that profile bunting
in red blood cells occurs only if a certain amount of aggre-
gation among red blood cells is present �see, e.g., Fig. 7 in
�30��. The aggregation gives rise to a finite yield stress, an
important feature whose effects on the flow profile are the
focus of the present work.
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